BevictorΰµÂ

֤ȯ¼ò³Æ£ºBevictorΰµÂ ֤ȯ´úÂ룺002212
È«Ììºò7x24Сʱ·þÎñ£º 400-777-0777

È˹¤ÖÇÄÜÇå¾²|AIÇå¾²Ó¦Ó㺻ùÓÚ´úÂëÓïÒåµÄ¶ñÒâ´úÂëͬԴÆÊÎö

ÎÒÃÇÔÚǰÎÄ[1]ÖÐÖØµãÏÈÈÝÁË»ùÓÚͼÏñ·ÖÀàµÄ¶ñÒâ´úÂëͬԴÆÊÎöÒªÁ죬¸ÃÒªÁìʵÖÊÉÏÊÇÆ¾Ö¤¶ñÒâ´úÂë×Ö½ÚÔ¼ÄÚÈݵÄÌØÕ÷¾ÙÐзÖÀà ¡£È»¶ø£¬ÕâÖÖÒªÁì´ÓÄæÏò¹¤³ÌµÄ½Ç¶ÈÀ´¿´²»¾ßÓпÉÚ¹ÊÍÐÔ ¡£

È˹¤ÖÇÄÜÇå¾²|AIÇå¾²Ó¦Ó㺻ùÓÚ´úÂëÓïÒåµÄ¶ñÒâ´úÂëͬԴÆÊÎö

Ðû²¼Ê±¼ä£º2021-11-01
ä¯ÀÀ´ÎÊý£º4898
·ÖÏí£º

1.СÐò

ÎÒÃÇÔÚǰÎÄÖÐÖØµãÏÈÈÝÁË»ùÓÚͼÏñ·ÖÀàµÄ¶ñÒâ´úÂëͬԴÆÊÎöÒªÁ죬¸ÃÒªÁìʵÖÊÉÏÊÇÆ¾Ö¤¶ñÒâ´úÂë×Ö½ÚÔ¼ÄÚÈݵÄÌØÕ÷¾ÙÐзÖÀà ¡£È»¶ø£¬ÕâÖÖÒªÁì´ÓÄæÏò¹¤³ÌµÄ½Ç¶ÈÀ´¿´²»¾ßÓпÉÚ¹ÊÍÐÔ ¡£

ÖÚËùÖÜÖª£¬»ã±à´úÂë¾ßÓнÏΪÏÊÃ÷µÄÓï·¨¿É¶ÁÐÔ ¡£ÈôÊÇÏȰѶñÒâ´úÂë¾ÙÐз´»ã±à£¬È»ºóÓÃ×ÔÈ»ÓïÑÔ´¦Öóͷ££¨Natural Language Processing£©ÊÖÒÕÌáÈ¡´úÂëÓïÒåÌØÕ÷£¬ÔÙ¾ÙÐÐͬԴÆÊÎö£¬ÕâÑùµÄÒªÁì¾ÍÈÝÒ×Ú¹ÊÍ£¬Õâ¾ÍÊDZ¾ÎĽ«ÏÈÈݵĻùÓÚ´úÂëÓïÒåµÄͬԴÆÊÎöÒªÁì ¡£Ä¿½ñ£¬ÕâÖÖÒªÁì²»µ«±»ÓÃÓÚ¶ñÒâ´úÂë¼ì²âÁìÓò£¬»¹±»ÓÃÔÚ´úÂë¿Ë¡ËÑË÷¡¢´úÂëÇÖȨÅжϵÈÁìÓò ¡£

±¾ÎÄÊ×ÏÈÏÈÈÝÁË»ùÓÚ´úÂëÓïÒåͬԴÆÊÎöµÄ»ù´¡ÖªÊ¶£»Æä´ÎÏÈÈÝÁË»ùÓÚ´úÂëÓïÒåµÄͬԴÆÊÎöÏà¹ØÊÂÇ飻×îºó£¬¸ø³öÁË»ùÓÚ´úÂëÓïÒåµÄͬԴÆÊÎöÊÖÒռƻ®Éè¼Æ£¬²¢Í¨¹ýʵÑéÑéÖ¤Á˼ƻ®µÄÓÐÓÃÐÔ ¡£

2.»ù´¡ÖªÊ¶

»ùÓÚ´úÂëÓïÒåµÄ¶ñÒâ´úÂëͬԴÆÊÎöµÄ»ù´¡ÊÇÓïÒåÌáÈ¡ ¡£PV-DMºÍTextCNNÊÇNLPÁìÓòÓйشúÂëÓïÒåÌáÈ¡µÄÁ½ÖÖ³£¼ûµÄÄ£×Ó, ˵Ã÷ÈçÏ£º

(1)¾äÏòÁ¿µÄÂþÑÜʽӰÏóÄ£×Ó£¨Distributed Memory Model of Paragraph Vectors£¬PV-DM£©

ÔÚPV-DMÄ£×ÓÖУ¬´ÊÏòÁ¿ºÍ¾äÏòÁ¿ÏàÆ´½Ó£¬ÓÃÀ´Õ¹ÍûÎı¾ÖеÄÏÂÒ»¸ö´Ê£¬Í¨¹ýÔÚ¾ä×ÓÉϵĴ°¿Ú»¬¶¯£¬Ê¹¾äÏòÁ¿Ó°Ïó¾ä×ÓÖÐËùÓдʵÄÉÏÏÂÎĹØÏµ ¡£ÔÚ´úÂëÓïÒåÌáÈ¡ÖÐʹÓÃPV-DMÄ£×Ó£¬ÄܼòÆÓÓÐÓõؽâ¾öÏòÁ¿³¤¶È·×ÆçÖÂÎÊÌ⣨ͼ1£©.

ͼ1 PV-DMÄ£×Ó

(2)TextCNNÄ£×Ó

TextCNNͨ¹ýÆ´½Ó´ÊÏòÁ¿½«Îı¾×ª»¯³É¾ØÕó£¬È»ºóÓ¦Óþí»ýÉñ¾­ÍøÂçʩչÉî¶ÈѧϰµÄÓÅÊÆ ¡£Ïà±ÈÓÚÒ»Ñùƽ³£µÄ¾í»ýÉñ¾­ÍøÂçÄ£×Ó£¬TextCNNÔÚ¾í»ý²ãÖÐÓ¦Óöà¸ö²î±ð³ß´çµÄ¾í»ýºË£¨Í¼2£© ¡£TextCNN¾ßÓÐÍøÂç½á¹¹¼òÆÓ¡¢Ñ·üçٶȿ첢ÇÒЧ¹û½ÏºÃµÈÓŵã ¡£¿ÉÊÇ£¬ÔÚǶÈë²ãÖнÓÄÉԤѵÁ·µÄ´ÊÏòÁ¿Ä£×Ó£¨ÈçWord2Vec£©¾ÙÐÐÓïÒåÌáÈ¡£¬Òò¶ø»áÓг¤¶È·×ÆçÖµÄÎÊÌâ ¡£

ͼ2 TextCNNÄ£×Ó

3.Ïà¹ØÊÂÇé

ZhangµÈ[2]Î§ÈÆÀÕË÷Èí¼þµÄ¼Ò×å·ÖÀàÎÊÌ⣬Ìá³öÒ»ÖÖÌØÕ÷ÌáȡҪÁ죬¸ÃÒªÁ콫Ñù±¾Ö¸ÁîÐòÁÐת»»Îª²î±ðnֵʱµÄn-gramÜöÝÍ£¬ÅÌËãÿ¸ön-gramµÄTF-IDF£¨term frequency¨Cinverse document frequency£©²¢Ñ¡Ôñ¼Ò×åÖÐTF-IDFÖµ½Ï¸ßµÄt¸ön-gram×÷ÎªÌØÕ÷ ¡£È»¶ø£¬n-gramÌØÕ÷½ö½ö·´Ó¦ÐòÁл¯ÌØÕ÷£¬²»¿ÉÌáÈ¡´úÂëÎı¾µÄÓïÒåÐÅÏ¢ ¡£

³ÂµÈÌá³öÒ»ÖÖ»ùÓÚ´úÂëÓïÒåµÄ¶ñÒâ´úÂëͬԴÅжÏÒªÁì[3]£¬Ê¹ÓÃWord2Vec»ñȡָÁîµÄ´ÊÏòÁ¿£¬²¢Ê¹ÓÃTextCNN¾ÙÐзÖÀà ¡£FangµÈÈËÔò½ÓÄÉÁËFastTextÄ£×ÓÌáÈ¡JavaScript´úÂëµÄ´ÊÏòÁ¿[4]£¬FastText½«¶à¸öµ¥´Ê¼°Æän-gram×÷ΪÊäÈ룬ֱ½ÓÊä³öÄ£×ÓÅжϵÄÖֱ𠡣

DingµÈÌá³öÒ»ÖÖ»ã±à´úÂëµÄÓïÒåÄ£×Ó-Asm2Vec[5],ÓÃÓÚÌáȡָÁî´úÂëµÄÓïÒåÐÅÏ¢ ¡£¸ÃÒªÁì»ùÓÚ¾äÏòÁ¿µÄÂþÑÜʽӰÏóÄ£×ÓPV-DMÉè¼Æ£¬²¢Ë¼Á¿ÁË»ã±à´úÂëÃûÌõÄ˳ӦÐÔÎÊÌâ ¡£ÓÉÓÚ¿ØÖÆÁ÷³ÌͼÄÜÔÚÒ»¶¨Ë®Æ½ÉÏ·´Ó¦´úÂëµÄ¶¯Ì¬Ë³ÐòÐÅÏ¢£¬Ò»Ð©Ñо¿ÊÂÇéÏȹ¹½¨´úÂëµÄ¿ØÖÆÁ÷³Ìͼ£¬ÔÙʹÓÃͼƥÅ䡢ͼÉñ¾­ÍøÂ磨Graph Neural Network£¬GNN£©µÈÊÖÒÕÆÀ¹À´úÂëÏàËÆÐÔ ¡£GNNËäÈ»ÐÔÄܱȹŰåµÄͼƥÅä¸üºÃ£¬µ«ÔÚÓïÒåѧϰÉÏÈÔÓÐȱ·¦ ¡£Îª´Ë£¬YuµÈÌá³öÒ»ÖÖͬʱ²¶»ñ´úÂëµÄÓïÒå¡¢½á¹¹ÒÔ¼°Ë³ÐòµÄÒªÁì[6]£¬Ê¹ÓÃBertÄ£×Ó¾ÙÐÐÕ¹ÍûѵÁ·ÒÔ»ñÈ¡ÓïÒåÐÅÏ¢£¬Ê¹ÓÃÐÂÎÅת´ïÉñ¾­ÍøÂ磨Message Passing NeuralNetwork£¬MPNN£©»ñÈ¡½á¹¹ÐÅÏ¢£¬Ê¹ÓÃResnetÄ£×ÓÌáȡ˳ÐòÐÅÏ¢ ¡£

4.¼Æ»®Éè¼Æ

»ùÓÚ´úÂëÓïÒåµÄͬԴÆÊÎö¼Æ»®Ö÷ÒªÓÉÓïÒåÌØÕ÷ÌáÈ¡ºÍͬԴ·ÖÀàѵÁ·Á½´ó²¿·Ö×é³É ¡£Ïêϸ´¦Öóͷ£Á÷³ÌÉÏ£¬Ö÷Òª°üÀ¨ÁËÈçϰ취£¨Í¼3£©

µÚÒ»²½£ºÊý¾Ý×¼±¸ ¡£ÍøÂçÑù±¾²¢±ê×¢Öֱ𣬹¹½¨ÑµÁ·Êý¾Ý¼¯£»

µÚ¶þ²½£º·´»ã±à ¡£¶Ô¿ÉÒÆÖ²¿ÉÖ´ÐеĶñÒâ´úÂëÎļþ¾ÙÐз´»ã±à£¬»ñµÃ»ã±à´úÂ룻

µÚÈý²½£ºÔ¤´¦Öóͷ£ ¡£Ê¹ÓÃNLPÊÖÒÕ¶Ô»ã±à¾ÙÐзִʡ¢Òªº¦´ÊɸѡµÈÔ¤´¦Öóͷ££»

µÚËIJ½£ºÓïÒåÌáÈ¡ ¡£¹¹½¨ÓïÒåÄ£×Ó£¬Ê¹ÓÃѵÁ·Êý¾Ý¾ÙÐÐѵÁ·£¬²¢ÌáÈ¡³öÿ¸öÑù±¾µÄÓïÒåÌØÕ÷ ¡£±¾ÎÄʹÓÃÁËPV-DMÒÔ¼°TextCNNÖеÄWord2Vec×÷ΪÓïÒåÌáȡģ×Ó ¡£

µÚÎå²½£ºÍ¬Ô´·ÖÀà ¡£Æ¾Ö¤ÓïÒåÌØÕ÷£¬½ÓÄÉÏàËÆÐÔ»³±§»ò¾ÛÀà/·ÖÀàËã·¨ÆÊÎöͬԴÐÔ ¡£±¾ÎÄʹÓÃÁËDNN¡¢KMeans¾ÛÀà¡¢CNNµÈÊÖÒÕ ¡£

ͼ3 »ùÓÚ´úÂëÓïÒåµÄͬԴÆÊÎöÁ÷³Ì

5.ʵÑéÆÊÎö

±¾½Úͨ¹ýʵÑéÑéÖ¤Á½ÖÖ»ùÓÚ´úÂëÓïÒåÄ£×ÓµÄͬԴÆÊÎöÒªÁì ¡£ÊµÑéËùÓÃÑùԭȪԴÓÚÍøÂ磬°üÀ¨Application¡¢Backdoor¡¢Generic¡¢Trojan¡¢Variant¡¢Virus¼°WormµÈÖֱ𣨱í1£© ¡£

±í1. ʵÑéÊý¾Ý¼¯

ʵÑéÒ»£º»ùÓÚPV-DMÄ£×ÓµÄͬԴÆÊÎö

ͼ4ΪPV-DMÓïÒåÄ£×ÓµÄѵÁ·Àú³Ì ¡£ÌáÈ¡³ö256άµÄÓïÒåÏòÁ¿£¬Ó¦ÓÃÉñ¾­ÍøÂç¾ÙÐзÖÀ࣬ƾ֤±ÈÀý4£º1»®·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯£¬×ÜÌå׼ȷÂÊΪ0.74 ¡£ÁíÍ⣬¶ÔÌáÈ¡µÄÓïÒåÌØÕ÷½ÓÄÉKMeansËã·¨¾ÙÐÐÁ˾ÛÀ࣬²âÊÔ׼ȷÂÊͬÑùÊÇ0.74 ¡£

ͼ4 »ùÓÚ PV-DMµÄDNNÄ£×ÓѵÁ·¼°²âÊÔ

ͼ5 »ùÓÚPV-DMµÄKMeans¾ÛÀࣨAccuracy=0.74£©

ʵÑé¶þ£º»ùÓÚTextCNNµÄͬԴÆÊÎö

ͼ6ΪÑù±¾ÖÐÖ¸ÁîÊýÄ¿µÄͳ¼Æ£¬Æ½¾ùÖ¸ÁîÊýĿΪ28£¬×îСΪ1£¨195¸öÑù±¾£©£¬×î´óΪ74£¨1¸öÑù±¾£© ¡£¹¹½¨TextCNNÄ£×Ó£¬ÉèÖòî±ð¾ÞϸµÄһά¾í»ýºË£¬½«ÌØÕ÷ͼ×î´ó³Ø»¯²¢Æ´½Ó£¬½«Êý¾Ý¼¯Æ¾Ö¤±ÈÀý4£º1»®·ÖΪѵÁ·¼¯ºÍÑéÖ¤¼¯£¬Èçͼ7Ëùʾ£¬²âÊÔ׼ȷÂÊΪ0.65×óÓÒ ¡£

ͼ6 Ö¸ÁîÊýĿͳ¼Æ

ͼ7 TextCNNѵÁ·¼°²âÊÔ

6.×ܽá

±¾ÎÄͨ¹ýʵÑé֤ʵÎú»ùÓÚ´úÂëÓïÒåµÄ¶ñÒâ´úÂëͬԴÆÊÎöÒªÁì¾ß±¸Ò»¶¨µÄ¿ÉÐÐÐÔ ¡£È»¶ø£¬PV-DM¡¢TextCNNÒªÁìÖ±½ÓÓ¦ÓÃÓÚÌáÈ¡»ã±à´úÂëÓïÒåʱ£¬ÍêÈ«½«»ã±à´úÂëÀà±È³É´¿Îı¾£¬ÓïÒåÌáÈ¡µÄ׼ȷÐÔÂÔµÍ ¡£ÎÄÏ×[5]ÊÇÕë¶Ô»ã±à´úÂë¶øÉè¼ÆµÄÓïÒåÌáȡҪÁ죬Äܹ»Ô½·¢×¼È·µØÌáÈ¡ÓïÒåÐÅÏ¢£¬ºóÐø½«Î§ÈÆ´ËÒªÁì×÷½øÒ»²½Ñо¿ ¡£

²Î¿¼ÎÄÏ×

[1]ÖÇÄÜÇå¾²Ñо¿×é È˹¤ÖÇÄÜÇå¾²|AIÇå¾²Ó¦ÓÃ|»ùÓÚͼÏñ·ÖÀàµÄͬԴÆÊÎö. 2021.10.15

[2]Hanqi Zhang, Xi Xiao.Classification of ransome families with machine learning based on N-gram ofopcodes[J]. Future generation computer system, 2019(90):211-221.

[3]³Âº­²´£¬ÎâÔ½£¬×Þ¸£Ì© . »ùÓÚ Asm2Vec µÄ¶ñÒâ´úÂëͬԴÅжÏÒªÁì [J]. ͨѶÊÖÒÕ ,2019,52(12):3010-3015.

[4]Yong Fang, Cheng Huang.Detecting malicious JavaScript code based on semantic analysis[J].Computer&Security, 2020(93):1-9.

[5]Steven H H Ding, Benjamin C MFung. Asm2Vec: Boosting Static Representation Robustness for Binary CloneSearch against Code Obfuscation and Compiler Optimization[C]. S&P,2019:1-18.

[6]Zeping Yu, Rui Cao, Qiyi Tang,et al. Order Matters£ºSemantic-Aware Neural Networks forBinary Code Similarity Detection[C]. AAAI, 2020:1-8.

°æÈ¨ÉùÃ÷

×ªÔØÇëÎñ±Ø×¢Ã÷À´ÓÉ ¡£

°æÈ¨ËùÓУ¬Î¥Õ߱ؾ¿ ¡£

Òªº¦´Ê±êÇ©£º
BevictorΰµÂ È˹¤ÖÇÄÜÇå¾² AIÇå¾²Ó¦ÓÃ
¿Í»§·þÎñÈÈÏß

400-777-0777
7*24Сʱ·þÎñ

ÁªÏµÓÊÏä

servicing@topsec.com.cn

ɨÂë¹Ø×¢
ÍøÕ¾µØÍ¼